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FOREWORD

The present report is part of a two volume set which describes a turbulent
boundary layer analysis and computer program that includes the effects of wall
cooling and equilibrium chemistry. Volume I contains the analytical basis for
the computer program and a discussion of the results obtained to date: Volume II

of the set describes the computer program and serves as a user's manual.

This investigation is entitled TRANSPIRATION AND FILM COOLING
BOUNDARY LAYER COMPUTER PROGRAM, The two volumes are additionally
subtitled as follows:

Volume I - Numerical Solution of the Turbulent Boundary Layer Equations
With Equilibrium Chemistry - by Jay N. Levine

Volume II - Computer Program and User's Manual - by Roger J. Gloss

Volumes I and II, and the computer program, have been distributed
according to the attached distribution lists. Additional copies of the two
volumes and the computer program (UNIVAC 1108 and IBM 360 versions) may
be obtained from T. Reedy, CPIA, APL/JHU, 8621 Georgia Avenue, Silver
Spring, Maryland 20910.

This investigation was conducted for the Jet Propulsion Laboratory,
National Aeronautics and Space Administration under contract No, NAS7-791 with
Walter B. Powell as technical monitor. Jay N. Levine of Dynamic Science was
Program Manager.
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NOMENCIATURE

A - Van Driest damping constant in eddy viscosity formula
An, Bn' Cn - coefficients in the difference equations
b - value of ;e at the initial station
Cp -  specific heat
c; - mass fraction of the ith species
Cf - local shear stress coefficient
Dn - right hand side of difference equations
DT - eddy diffusivity
E - PG LY/
F - G'/¢3 Re_, also thrust
G -  function used to transform y
G', Gg" - 1st and 2nd derivatives of the G function
H - total enthalpy, also shape factor = § * /6
h - static enthalpy
- equals 1 for axisymmetric flow, 0 for planar flow
K - acceleration parameter
k - thermal conductivity, also common ratio in geometric
stepsize progressions
L - reference length
Le - molecular Lewis number
LeT -  turbulent Lewis number
) - mixing length
M -  molecular weight
ﬁlw -  surface mass transfer rate =p_ v
m,n - mesh indicies
n - parameter in G function
P - pressure
Pamb - ambient pressure at nozzle exit
Pr -  Prandtl number
PrT -  turbulent Prandtl number
i - local heat transfer rate
r* - nozzle throat radius
r - local radius of the wall
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Universal gas constant
Reynolds number
entropy

wetted length along wall
Stanton number

temperature

velocity in s and y directions, respectively
dimensionless velocity ratio, G/ u"’;’

— \1/2
friction velocity, (rw / pw)

velocity in y direction
dimensionless velocity ratio, Tiw / uk,

axial distance

normal coordinate

dimensionless normal coordinate, ; u";v/ v
nondimensional y coordinate =y /L

constant in G function
mass fraction of the ith element

mass fraction of the ith element in the transpiration coolant

constant in G function

ratio of specific heats

boundary layer thickness

displacement thickness

incompressible displacement thickness

kinetmatic eddy viscosity
function used to scale ¥
dg/ ds

momentum thickness

eddy conductivity
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Subscripts

Yy

Superscripts

j

molecular viscosity
kinematic viscosity
density

used to represent various transport property terms

shear stress

at the edge of the boundary layer
pertaining to the ith species

evaluated at reference conditions

at the wall

partial derivative with respect to y

2nd partial derivative with respect toy

equals 1 for axisymmetric flow, 0 for two dimensional flow
denotes a fluctuating term

denotes a dimensional variable and/or a time averaged
quantity



ABSTRACT

A finite difference turbulent boundary layer computer program has been
developed. The program is primarily oriented towards the calculation of boundary
layer performance losses in rocket engines, however, the solution is general,
and has much broader applicability. The effects of transpiration and film cooling
as well as the effect of equilibrium chemical reactions (currently restricted to
the H,-0O, system) can be calculated.

The turbulent transport terms are evaluated using the phenomenological
mixing length - eddy viscosity concept. The equations of motion are solved
using the Crank-Nicolson implicit finite difference technique. The analysis and
computer program have been checked out by solving a series of both laminar and
turbulent test cases and comparing the results to data or other solutions., These
comparisons have shown that the program is capable of producing very satisfactory
results for a wide range of flows. Further refinements to the analysis and program,
especially as applied to film cooling solutions, would be aided by the acquisition
of a firm data base.
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I. INTRODUCTION

This effort was carried out for the purpose of developing a practical,
and immediately useful state-of-the-art engineering method for analytically
predicting the boundary layer performance losses in liquid rocket engines,
including the effects of transpiration and film cooling. The turbulent boundary
layer analysis developed herein is, however, quite general and has much

broader applicability.

The project also had as a primary short term goal the prediction of boundary
layer/coolant performance losses for the space shuttle engine configurations
currently under consideration by NASA. Therefore, the analysis and resulting
computer program have been oriented towards the analysis of high pressure
hydrogen-oxygen engines and the current version of the computer program is
restricted to HZ—O2 systems*. The analysis and program use equilibrium
chemistry since the flow in the high pressure HZ—O2 engines will most certainly
be very close to equilibrium. The inclusion of finite rate kinetics to broaden
the applicability of the program, would have jeopardized the chances of the
program's working for the shuttle engines, since notorious numerical difficulties
are encountered in finite rate kinetic boundary layer solutions at near equilibrium

conditions.

In the past several years, the use of finite difference techniques, coupled
with the mixing length-eddy viscosity concept, has enabled several investi~
gators (e.g., Refs. 1-6) to obtain boundary layer solutions which compare quite
favorably to experimental data for a broad range of flow conditions. Incompressible
and compressible flows with and without wall heat and mass transfer have already
been treated for a range of geometrical shapes; and for the most part, excellent
results have been achieved. Reacting turbulent boundary layer flows have also

been treated , although to a much lesser extent. In addition, the scarcity of

*The HZ—O chemical system is the only reacting system that can be currently
treated? Nzonreacting perfect gas solutions can, however, be found for all
values of vy and M.




good experimental data for reacting boundary layer flows has precluded a

full evaluation of the applicability and accuracy of the latest theoretical
techniques. It was felt, however, that the excellent results achieved to

date with the finite difference-eddy viscosity technique justify its use even
for reacting flows, until such time as more exact and computationally feasible
turbulence models can be developed.

As is usual when turbulence models are being utilized, the current
analysis and computer program are flexible enough to allow for the incorporation
of widely varying eddy viscosity models; even though for development purposes
only one such model has been treated.

To allow for greater generality, and a wider variety of applications for
the program, provision has been made for the following options: equilibrium
HZ—O2 or arbitrary ideal gas solutions; laminar or turbulent flow; compressible
or incompressible flow; and 2-D planar or axisymmetric geometry.

The numerical method chosen for the solution of the boundary layer
equations is a Crank-Nicolson implicit finite difference technique. In applying
this finite difference technique the difference analogs of the equations of
motion are linearized and uncoupled and solved using a tridiagonal matrix inversion

algorithm.

The final report for this effort is presented in two volumes. Volume I contains
a description of the theoretical foundations and numerical methods employed in the
solution, as well as a discussion of many of the solutions obtained to date.
Volume II is a users manual for the computer program and contains detailed

subroutine descriptions, input and output descriptions, and sample cases.




II. METHOD OF SOLUTION

A. BOUNDARY LAYER EQUATIONS

The boundary layer equations for compressible turbulent flow can be
derived from the time dependent Navier-Stokes equations using the Reynolds
time-averaging procedure and the usual boundary layer order of magnitude

assumptions.

so the final equations are presented below. Equations (1-4) are written in a

There is no need to add the N + 1 st derivation to the literature

curvilinear coordinate system in which s is the wetted length along the wall and

y is measured normal to it (x is axial distance measured along the centerline).

A bar over a quantity denotes the fact that it is a time averaged and/or a
dimensional quantity. It has been assumed that the lateral and transverse
curvature terms can be neglected (curvature effects can be relatively easily

incorporated if desired). The conservation equations are:

Continuity

2 (Fur)) + = (57 +7TT, ] =0
Momentum
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Element Conservation

where j = 0 for 2-D planar flow, j = 1 for axisymmetric flow, y, Le, Pr, are the
usual molecular viscosity, Lewis number, and Prandtl number, respectively,

and e, LeT, PrT are their turbulent counterparts.

The boundary conditions at the edge of the boundary layer, y = &, are set

by the inviscid flow and are:

(5)
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In practice, many times the pressure distribution, rather than the edge
velocity, is specified. In such cases the velocity distribution is found

from the given pressure field using Bernoulli's equation.

At the wall, y = 0, the boundary conditions are:

Wall: y =0 u =0 (6)
Bx_r + p'v =—p.w; =;1 , given mass transfer
w distribution
T = -fw' specified wall temperature distribution
a&‘i Pr

— | =37 (TX. -a. >_=_J_
3y 'w w o w i lTrans quew




where the a, boundary condition is determined by the condition that the net

i
elemental mass flux at the wall (i.e., the sum of the convective and diffusive

fluxes) must equal the elemental mass injection rate.

B. TURBULENT TRANSPORT PROPERTIES

In formulating the turbulent equations of motion (1-4) it was assumed
that the turbulent flux terms ¢ 0'v', p v'h' and 0 v'c} could be related to

mean, time averaged quantities, through the use of the phenomenological
mixing length-eddy viscosity concept. Accordingly, the eddy viscosity, €,
eddy conductivity # , eddy diffusivity, DT’ turbulent Lewis number, LeT, and

turbulent Prandtl number, PrT, have been defined as follows:

€ = - EV H = = -———CP..Vh (7)
ou/dy 3h/dy
Le, = ——-—pCPDT D, = - v Cli
CHET n T aci/ay
eC
_ P
PrT— m

The eddy conductivity as defined in equation (7) and used, via the
turbulent Prandtl and Lewis numbers, in equations (3 and 4), is based on static
enthalpy fluctuations. Other investigators (e.g., Refs. 1 and 5) have at times
defined the eddy conductivity and turbulent Prandtl number on a total enthalpy
basis. Bushnell and Beckw1th( 7) derived the followmg relation between the
turbulent Prandtl number based on total enthalpy, PrT and Pr.,, which is based

on static enthalpy. The relation is

~ 3 (w/u )/dy }~1

Pry = Prp {1+2H Prp - 1) STa/m /3y (@

From equation (8) it can be seen that the difference between the two Prandtl
numbers will be small when either PrT ~ 1, or viscous dissipation is
negligible (u(za/ZHe < 1),



As pointed out in the Introduction, the computer program is designed
to allow flexibility in the choice of a turbulence model. Also pointed out,
was the fact that for developmental purposes only a single model was pursued.
In evaluating the literature, it was felt that the model developed, and then

extended, by Cebeci, et al(1 8)

was the most thoroughly tested over a wide
range of applications, hence, it was selected as the model to be used herein.
As more is learned about turbulent flows and reacting turbulent flows, in
particular, more refined models will be developed. Hopefully, these advances

will be incorporated into the present analysis as they become available.

The details of Cebeci's extended eddy viscosity model may be found
in Reference 8, so they will not be reiterated here. The final results are,
however, given for the sake of completeness., The model uses a two-ayer
representation of the eddy viscosity. In the inner region, closer to the wall,
the eddy viscosity is based on Prandtl's mixing length theory, as modified by
Van Driest to account for the damping effect of the wall, and as extended by
Cebeci to include wall mass transfer, compressibility and pressure gradient
effects. Thus, the eddy viscosity in the inner region is given by

_ 42| 2T
e =47 S | (9)
where the mixing length, £, is

£=.47[1-exp (-y/A)] (10)

the Van Driest "damping factor,” A, is defined as

A=_E£_ | (11)

(r AN~

and the factor, N, which accounts for pressure gradient and mass transfer

effects is given by

oo & T \ [1 11.8(Dv)w|.1 ] N 11.8(pv)wuw 12)
= ds{_ —-H—( } ——'T - exp (_ . %_ exp (.__ . )1.2_ —
wow Pw w) H wTw H




If (;W)W equals zero equation (12) becomes a degenerate form and N must be
calculated as

1
-2

N—1+118—<wuway W) (13)

in the outer, wake-like, portion of the boundary layer, Clauser's form of the
eddy viscosity, modified to include an intermittency factor, is used. The outer
eddy viscosity is given by

—6 -1
e, =0. 0168u 8% L1+5 s( L ] (14)

\N§./
where the term in brackets is an approximation to Klebanoff's error function
intermittency relationship and 5;nc is the incompressible displacement thickness
defined as

Sthe = S(l- %)dy | (15)
5 e

The eddy viscosity for the inner region is used from the wall outward
until the height at which €, = ei is reached. From that point, to the boundary
layer edge, the outer expression for eddy viscosity is utilized.

1(9)

The experimental data of Simpson, et a and others have shown that

the turbulent Prandtl number varies considerably across the boundary layer.

(10) show that for many flows the variation

The calculations of Thielbahr, et al
in turbulent Prandtl number must be properly accounted for. The current
analysis uses the turbulent Prandtl number formulation developed in Reference 8,
thus PrT is taken to be

pr. = Km [1-exp (-y*/a")] (16)

Tk [1-exp (-y"PrE /87

where km = .4, kh = .44 are the momentum and enthalpy Prandtl mixing

length constants, respectively, and
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At =26 (F /_uu_\’llﬁ (17)
' w

B+ = 34<£__VY % 4 l
5 G

at the wall, y = 0, equation (16) reduces to

Prp = 1 27 pr% (18)

Figure 1, taken from Reference 8, contains a comparison of the present

(11)

Pr., model with the measurements of Simpson, et al(g) and Jenkins model.
T

Not too much is known about the turbulent Lewis number. The somewhat
rough results of Reference 12 indicate that it is probably close to unity. In the
current analysis the equations and computer program have been kept general,
to allow for an arbitrary variation of LeT. However, no attempt has been made
to calculate or model LeT, and it has been assumed to be equal to unity in all

the calculations performed to date.

C. EQUATION OF STATE AND CHEMICAL SYSTEM

In all cases the equation of state may be written as
p= RRL (19)

For perfect gas calculations arbitrary values of Y and M may be selected

and the following relations are used:

Cp = ﬂ%/TI\%L (20)
h = Cpl (21)




In its current form the program is only capable of treating a single
component ideal gas, the modifications required to treat diffusion effects
for a system of nonreacting ideal gases are straightforward and can be

incorporated into the analysis in the future, if desired.

While in theory there are no restrictions on the chemical system for which
equilibrium computations may be carried out, in practice, core storage
limitations and economic constraints on computer execution time can restrict
the class of chemical systems which can be treated. The computer program
is currently set up and dimensioned to handle the hydrogen~oxygen system
and considers two elements (H,O) and six species (H H, OH, H, 0, O, 0).
Only slight modifications would be required to solve a shghtly 1arger chemical
system, but, a significantly larger chemical system would not fit in "core"” on
a standard Univac 1108 system (65K memory)*. Larger chemical systems could

be accommodated on other computer systems, however.

. The boundary layer equations (1-4) for equilibrium flow are written in
terms of the total enthalpy, H, and elemental mass fractions, 0. , however,
the species mass fractions, C; also appear in the energy equatlon if Le or LeT
is not equal to unity (in which case the species enthalpies, hi’ also are present).
The equilibrium state calculations in the present analysis are performed by
selected subroutines from the One-Dimensional Equilibrium (ODE) JANNAF
Performance Program(13) . This program is a descendant of the NASA Lewis
Equilibrium Program(M) and uses the JANNAF thermodynamic tables(ls) .
the element mass fractions and two thermodynamic state variables the program
solves for the species mass fractions and all of the other thermodynamic

Given

state variables. At various times in the analysis the following three types of

state calculations are performed:

Given Calculated
, h, P c,, T, p,S8, h,, etc.

i i
a; T, P Ci' h, o, S, hi' etc.
Q,il SIP Cil hl T, P, hl' etc.

*If the analysis is formally restricted to Le and Le, equal to unity then the C
and h, need not be stored in memory and larger chemical systems can be
accommodated.



The static enthalpy for a mixture of gases is given by

h=3 c h, (22)

: 1 1
1

where, hi’ the enthalpy of each species is defined as

T
h, = S Cp dT + phg = h,(T) - h,(298) + Ahfi (23‘)
298 ! 1298 298 |

The enthalpies are based on the same reference state as the JANNAF Tables,
i.e., the enthalpies of the elements are zero in their standard state at

T = 298°K. A more detailed description of the equilibrium analysis can be
found in References 13 and 14.

D. LAMINAR TRANSPORT PROPERTIES

There are no theoretical restrictions on the transport property formulations
which can be used and the subroutine structure of the computer program is
designed to allow the method of calculating the transport properties to be
easily modified. The present formulation requires only the viscosity, Prandtl
number and Lewis number to be calculated. The methods used to calculate

these quantities are presented below.

Since the ideal gas calculations performed to date were basically for
program check-out purposes the transport property calculations for such flows
did not receive a great deal of attention. The ideal gas option is restricted to
a one component gas so the Lewis number is not required. The Prandtl number
is assumed to be a constant. Its value can be selected to approximate the gas
being considered. Most of the ideal gas calculations have been for air and

currently the viscosity calculation is based on Sutherland's Law expressed as

-8 %
2,27 %1078 T
M= 5198 6) | (24)

10




For gases other than air a different viscosity formulation should be used,
however, at present no other bptions are provided for and equation (24) is used

for all ideal gas calculations.

The calculation of the laminar transport properties for a mixture of gases
(currently Hz—O2 system) is based on the following. The viscosity of each
specie, M, was taken from Reference 16 and is stored as data in tabular form.
The viscosity of the mixture is then calculated from Wilke's semi-empirical

fomula(l7) .

X, 1
u=zu(1+2cp-L (25)
=1 j=1 B

j#i

where ng is the number of species, X is the mole fraction of species i, and

®i5 is

. 1/4 |
®i5 = 23/2 (u+ M> (u_l ‘2 > ] (26)

(18)

polyatomic gas could be very satisfactorily approximated by slight modifications

Mason and Saxena found the thermal conductivity of a mixture of

to Eucken's relation (which relates the conductivity of a species to its

viscosity) and Wilke's formula. Their resulting expression is
. ~—1
- ¥k , (1+1.065 3 o, o (27)
i=1 j=1 box
J'# i

where ki the conductivity of the i th species is given by

= 15
ki= 3 M (.354 CPi +.115 R/Mi> (28)

11



The specific heat of the mixture is*

n
s
Cp =i§1 o CP. (29)
i
and the Prandtl number can then be calculated as
uwC
- P
Pr = ” (30)

Table 1 contains the results of a limited comparison of the predictions
for u and Pr from the above, with the more accurate results of Svehla's
(19)
hydrogen mass fractions of 11.19% and 17.5% and temperatures of 1000°K to

4000°K. The results show that the present much simpler and faster calculations

calculations The comparison was made at a pressure of 1 atmosphere,

are more than adequate and their use is recommended.

The diffusion coefficient and, hence, Lewis number also needs to be
determined. In the present effort the effect of nonunity Lewis number was not
studied and Le was assumed to be unity. The equations, however, are general
(for binary diffusion) and if a method for calculating Le is developed it can
easily be adopted. If desired, the effects of multicomponent diffusion, also
ignored in the present study, can be considered with some modification to the

(20)

analysis. The use of the bifurcation approximation is recommended if the

effects of multicomponent diffusion are to be considered.

E. NONDIMENSIONALIZED EQUATIONS

The numerical solution of equations (1-4) involves a matrix inversion
procedure. In an effort to improve the accuracy and reduce the possibility of
round-off error in the solution, the independent and dependent variables have
been nondimensionalized and scaled, when necessary, so that the resulting

normalized variables are much more uniform in magnitude. The independent and

*The specific heat as defined in equation (29) is sometimes referred to as the
"frozen" specific heat.

12




COMPARISON OF CURRENT TRANSPORT PROPERTY CALCULATIONS

TABLE 1

WITH THE RESULTS OF sveHLa(19

Pressure = 1 Atmosphere

Viscosity (Poises)

Prandt]l Number

%HZ 'FO'K'A Current Svehla Current | Svehla

11,19 1000| 358.7 x 107° 356 x 107° .7069 | .7477
2000 | 663.8x 107° | 660 x 1070 7120 | 7237
3000 | 893.0x 107° | 895 x 107® 6182 | .6178
4000 | 942.6x 1078|974 x 107 .4281 | .4255

17.5 1000 | 344.2 x 107° [351x 107° .5297 | .537
2000| 619.2 x 10°° [614x 107° .5632 .5605
3000 | 829.0 x 1078 [ 820 x 1070 .5530 | .5381
4000| 872.6 x 107° [ 878 x 107 .4485 | .4181

13



dependent variables have been normalized as follows:

s=3/L y=Gly), ¥ =y/LL(s)
u'—‘u_lL F’:BQ py= fpv+pv)
r T p o u. L (s) (31)
5 < R,
P = H = 3
Pe pru? H u. ® By u?
=]
- - . r
=B = € =W
H ur € ;r— rW L

where r subscripted quantities are reference values and L is a reference length.

The function ¢ (s) has been defined such that it is always almost equal
to the boundary layer thickness

¢ = (;/L)g where (?/L)g is the value of y/L where | l—u/ue| = ,01%

Using { to normalize y/L then yields ; values at the edge of the boundary
layer of about unity for all s, and, hence, few, if any, mesh points have to

be added as the finite difference calculations proceed downstream. In
addition, the normal coordinate is also stretched by the function G(y) (see
Section H). This function has been designed to stretch Y near the wall (in
order to cope with the steep wall gradients in turbulent boundary layers),
while allowing constant step size to be taken in the transformed coordinate, y.
Constant step size in the normal direction is not mandatory, however, it does
yield much simpler difference equations.

*This condition could possibly be satisfied at more than one location in the
boundary layer, however, the program will always determine the largest
value of ¥/L which meets the test.

14




The partial derivatives in the transformed coordinates are given by:

2 .12 gy
ds L 3s C L 3y
(32)
2 -G 2
dy ~ LC Dy
and the nondimensional equations become
Continuity
13 jy_ Gt~ O -k _
] j 3s (PUYW) ¢ Y B—Y (pu) + G dy (pV) 0 (33a)
w
Momentum
uﬂ_ uG_'z;_'~a_u+vG.§_u_=_d&+_(_3_'_ _a_[G( ) a_U_] (33Db)
PU ¥~ P 3 Y 5y 7°F Y ds e2 Re a )
Energy
ou aH_puG_'t_'g;.aﬁ.;.val_aiI_:_Gi_L._a_{G( )
ds Iq Ay dy 2 Reg 9Oy PrT ay (33¢)
Ju dc,
+ G (l-5) + pe(i- ——)]uay + DG Le-1) + p ¢ (Legp-1)] hlﬁ}
i
Element
aoz vur  do da, . ple Le,, da,
i, Gy 2 b_1_G 1 8 Ty i

The eddy viscosity formulas, equations (9-15) must be written in terms

of nondimensionalized variables. With the exception of the equation for €.,

the procedure is simple and straightforward. The nondimensional form for €,

15



is given below:

R P et D
oy
where
dP 11. 8(pv) Re_(°%u %

N®=- (), u“ du/dyl, [1 exp{ [pv:au/‘gylw] }]

(35)
11.8(pv) Re ¢°
+exp{ “pvw[ o Bu%yl ] }

however, if (p V)W = (0, then

N°®=1+11.8

dP_ [ Re_ ¢®

ds du/dy | ] (36)

F. FINITE DIFFERENCE EQUATIONS

Most of the more recent numerical boundary layer solutions(1-6) have
utilized some sort of so—called "implicit" finite difference technique. The
basic reason for the selection is the inherent numerical stability that implicit
techniques offer. In the current analysis the finite difference technique used
to solve the equations of motion is based upon the Crank—Nicolson(2 1 implicit
method. In deriving the finite difference equations the following mesh notation

was used:

16




® known

¥ unknown

< | -

Ay

m+1/2,n
- * % n

N U

Ay

l _* 5 n-1

m m+1

Finite Difference Mesh

The dependent variables are known at grid points (m) and are unknown
at grid points (m + 1) a small distance, A s, downstream. In the Crank-
Nicolson finite difference scheme the unknowns at (m + 1) are found by
replacing the partial derivatives with linear difference quotients and evaluating

the partial differential equations at m + 1/2, n.

If V and W are used to denote the unknown dependent variables, the
difference quotients at {m + 1/2, n) can be written as:

Qv

yx W

m-f'l,n"vm,n)/As (37)

17



av_ 1 -
3y - 2% T Wns1, n+1 Vin+1, n-1748Y (38)
m,n
3y _ 1 3
v "2y T Umsint17 2 Vne1n” Vim+1,n-17207  (39)
VAW _ 3 ' ) ]
dy oy —Lvy (Wm:l-l,n+1 Wm+1,n—1)+wy (Vm+1,n+1 Vm+1,n-1) /4by
m,n m,n
(40)
where:
Vy =(vm,n+1 _Vm,n—l)/sz (41)
m,n
Vyy (vm,n+1 ZVm,nHl.Vm,n—l)/Ay (42)
m,n
Nonlinear terms involving products of the dependent variables are written as
Ve =V_ Vv (43)

m,n m+ 1,n

VW = S +V ) (44)

m,nwm+1,n m+1,nwm,n

All of the previous approximations involve truncation errors on the order of
(& h ' Ay’) . To obtain truncation errors of similar magnitude for terms of the
following type

OW )\B )\BV

Vas c A3y S-g,)\V, etc.
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the difference quotients would have to be written as

Vm'i'l/Z,rl Mm-i'l,n - Wm,n)/As

(45)

A v - vm,n)/As' etc.

m+1/2,n "“'m+1,n
where A represents any secondary dependent variable, i.e., 0, 4, etc.
Difference quotients like {45) lead to nonlinear difference equations and
are unacceptable for present purposes. In order to surmount this difficulty
the m + 1/2 unknowns in forms like (45) must be evaluated in a linearized

manner. Presently, m + 1/2 variables are calculated as

(i) _ i-1
)\1;1+1/2,n—1/2()\m,n+x(r;+)l,n) (46)

whe:e superscript i refers to the number of iterations. Initially, Xm +1/2 .0 =

)\m n' and the truncation error is of order As. To reduce the truncation error
one has the option of reducing the step size, or iterating the solution at each
finite difference step. One iteration is sufficient to reduce the truncation

error to order A s® (22)

When the above difference approximations (37-46) are substituted into
the nondimensionalized equations (33) a set of (2 +ne)N linear algebraic
equations foru, H, a i(i =1,... ne) are generated. As a direct result of the
linearization, the solution for (p v) becomes uncoupled and it may be found
by numerically integrating the continuity equation after u, H and the a,

have been calculated.

The equations for u, H and a; may be solved as a coupled set (e.qg.,
Refs. 22 and 23) or they may be uncoupled and solved successively. The
latter, uncoupled, method of solution was selected since it requires less
computer memory storage and is computationally faster (the more chemical

elements considered the greater the advantage becomes).
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The resulting finite difference equations for the momentum, energy

and element continuity equations can all be written in the following form:

A Wosl 1l P B Whs1,n *Cn W1 ,n-1 =Dy 07l N1 47)

where W stands for either u, H or ai.

In deriving the An' Bn' Cn’ Dn coefficients, equations (37-46) were
used and the order of solution was chosen to be momentum first, followed
in order by the energy and successive element continuity equations (for the
H-O system there is only 1 element continuity equation). In addition,
the final form of the coefficients, as presented below, makes use of the

following definitions:

T
1 1 (48)
o3 K- +pe (I-E)
=K - pE -
04 = B (Le - 1) + PrT(LeT 1)
€18
=“Le + p LeT
05 Pr PrT

For the sake of brevity, the quantities to be evaluated at m + 1/2,n
have been left unsubscripted. They are calculated in the manner prescribed
by equation (46).




Momentum Coefficients

- m.n, pvG' G'"" o
An 4Ay + ary F[( G 01+G0'1y)/4Ay + sz2]
F
B = -&“ _Eu + Gal
n As 2 Ym n Ay®
' (49)
Eum n ﬂG'
Puu dp FG'o.u_ . pvG'u ,
= m.n_ e l Y¥mn - -7 Ymon '
Pn As ds " ’ 7 51 oGy Ym .n
Energy Coefficients
A __Mmn, ove (Sro, + G0, ) Go,F
n 4py 40y 4AY 2 2y %
FG'o
B = i 2
n As AY?®
P'G'a2
©n T An T ayE
pUH f X
D, =g - ZG H +%[(GG' o, +G'o, JH
S m,n m,n (50)
+G'g,H 1+5¢ ) (u - )
o2 VY, o 2 sz m+l,n+l m+l,n-1
FG'cJ'3 FG'c
* 27y (uym n Ay )(um+1 n+l m+1,n—1)_ m+1,n-1
FG'e
E F G'' 3
H7 H t5 Cam 0, +Gloy Ju + (u
2 ym,n 2 G 3 3y ym,n 2 yym'n m+l,n

+F>[G'g, h, c. ]
i—/ 4 i 1yy
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Element Coefficients

-Eu G'o
- m,n_ VG _ F G +G'o + S
FG'e
B == -Ql‘l--{- > 5
n AS AY 51)
FG'US
Cn = -An NG
oy &4
- m,n o vG E G"
D, AS 2 9 + [( O *Glo Y)Ui
m,n ym,n
meln ym,n

G. SOLUTION OF THE DIFFERENCE EQUATIONS

The difference equations, in the form of equation (47), are tridiagonal
(24)
. The

method is based on Gaussian elimination, but it takes advantage of the highly

in nature and a very efficient method of solution is available

structured form of a tridiagonal matrix. The tridiagonal system of equations
for each of the equations of motion (Eq. @7)) can be rewritten in the following
matrix form

AW =B (52)

If the mesh indexing is set up so that 1 corresponds to the wall and N to the
last point at the edge of the boundary layer, then A is an (N - 2) x (N - 2)
matrix of coefficients, W is an (N - 2) column vector of unknowns and B is
also of dimension (N ~2) and contains all of the nonhomogeneous terms in

the equations. For each variable (u, H, c.i) at each finite difference station
there are actually (N) unknowns, represented by Wm+ ] nh= 1,2,..., N.
Two equations for the unknowns are supplied by the boundary conditions at
the wall and at the boundary layer edge. The boundary conditions, depending
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upon their nature, either specify a wall or edge value, or specify a condition
which can be used to relate the value of the variable at the wall or edge to

its value at one or several internal mesh points. Thus, there remains the

set of (N -2) equations for (N -2) unknowns given by equation (52). The
tridiagonal form of the coefficient matrix, A, is depicted below:

411 %12
1 922 33 Q
A= @32 233 %34 (53)

4N-2 ,N-3  3N-2,N-2

As its name infers all of the nonzero elements lie along the three main
diagonals of the matrix. The solution of the equations given by (52) is

simply effected using the following recursion relations, which correspond
to forward (Gaussian) elimination and back substitution.

Forward Elimination

a b
M= a12 B, = gl (54)
11 11
_ 3§ i+l b Bi134 41
o I W e W (55)
i1 MN-1,3,1-1 1,17 M-1 34,11
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Back Substitution
Wn-1 = BN-1 (56)
W, =g =W A i=N-2, N-3, ..., 2 (57)

The values of the unknown Wi's at the wall, W1 , and edge, WN, are

then found from the boundary conditions. From equations (5) and (31) it
follows that

u
Y., = —2
N u
r
H
= €
Hy= 3 (58)
r
o, =0Q
1N 1e

u; = 0
e — Kk
Hw hw

r r

40, a, +,246y A a,

. = i- o lTran_g

i, 2 AyAO+ 3
*For a perfect gas specifying T.  is equivalent tae specifying h. . For a real

gas flow in chemical equilibrium h_ can also be immediately f8und from T
when there is no mass transfer at the wall. With no mass transfer the a,

at the wall, and in fact throughout the boundary layer, remain constant and
given P, T and the a,, h._ can be found from the known equilibrium state.
With mass addition, hlowever, the ay at the next station (m +1) are not known

until the species continuity equationvf'las been solved. In order to solve the
equations, however, the boundary conditions must be specified in advance. In
this case, in finding the Hw corresponding to the specified TW the a,

w
must be approximated. Currently, in finding Hw’ °i(j) is set equal to(m +1)
(3-1) lm+1)
aiw , where superscript (j) refers to the number of iterations. On the first pass
{m+1) '
A
i =ay

Y (m+1) Y (m)




where

Re an.n Pr
r ww

A = : ‘ (60)
o} G Ky LeW

and 0y is the mass fraction of element i in the transpiration coolant,
Trans

In deriving the equation for a; in equation (59) the derivative da i/aylw was
1
written in finite difference form using the 3 point numerical derivative given by

ks STRNNNS B i
Sy lw= Ty 39 + 40, - ) (61)

The edge boundary conditions, equation (5), are in theory only satisfied
asymptotically in the limit as y approache infinity, It, therefore, follows
that the boundary conditions imply that

Lim 22=Lim 22 =Lim —-=0 (62)
y Y

In practice, the boundary conditions must be applied at a finite value of y
(unless a scale transformation which maps y = 0 # @ into a finite domain is
used) and the conditions expressed in equation (62) can only be satisfied to
within a specified tolerance. The smaller the tolerance the greater the y
value at the edge of the boundary layer. The actual solution is carried out
assuming a value for the tolerance, ¢, has been specified, Then, after the
momentum equation has been solved, the solution is tested to see if the
derivative at the edge of the boundary layer is sufficiently close to zero.
The actual test is

A
Ye

cvlol
b [

lg <€ (63)
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ou
where 3 yle is approximated as

=.1—(_3

Ie 20y 4

(64)

Unal, N * 4 Ymel, N-1 = Ym+1, N-2)

If this test is not satisfied an extra mesh point is added and the solution
is repeated. This procedure continues until equation (63) is satisfied.
The use of the { function to normalize the boundary layer height keeps

the number of points added to a minimum®*,

Equivalent tests are carried out on the enthalpy and element mass
fraction profiles after the energy and element equations have been solved,

After the momentum,energy and element equations have been solved at
a particular station, and the corresponding fluid and transport properties have
been evaluated, the continuity equation can be numerically integrated as follows.
The derivatives and coefficients in the continuity equation are evaluated at
m+1/2,n-1/2.

° -} m+1/zln—1/2

n-1

*In the program if equation (63) is not satisfied after five mesh points are

added at a given station, the solution is terminated, since such a result is
usually symptomatic of errors either in the input tables or the selection of

step sizes.
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using central difference quotients. This allows pv to be calculated from the

wall to the boundary layer edgé as

dr]

ov = ov _'_{_ 1 3pu _ "“m+3 n-3"w
= _ = :
m+ % ,n m+%,n-1 Gn-% ds Gn_%r{Nm_'_% ds 'm+ 3%
(65)
g _B_p_u}
* (gy m+%,n-% o3y J OV
where
2 - - - )
as PU (pum+1,n+pum+l,n-1 pum,n pum,n-l /245
pu = -1-<pu + pu + pu + pu >
m+%,n~-% 4 m+1,n m+1,n-1 m,n m,n=-1
. (66)
Spu = - -
dy <pum+1,n+pum,n pum+1,n-1 pum,n-1>ZAy
30v = ( -
dy *Vim+ #,n pvm+%,n-1>/Ay

The value of pv at the wall required to start the calculation is either zero or
equal to ﬁ1w, the local mass flux rate, depending on whether transpiration
cooling is present.

After the continuity equation has been solved, the solution at that station
is complete and the boundary layer profile parameters can be calculated.
However, an option to iterate the solution until the change in skin friction is
less than a specified percentage, or until a specified number of iterations
have been performed, has also been included*. There is a trade-off between
iterating and taking more steps in the s direction. In order to optimize the
choice, more experience with the program will be required.

*In Reference 1 the eddy viscosity at each mesh point was averaged with its value
at four surrounding points (two above and two below) in order to aid in convergence
of the iteration procedure. This procedure was also adopted in the current analysis
early in its development and it seemed to improve the results by preventing error
growth by feedback between the velocity profile and eddy viscosity.
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H. STRETCHING OF THE NORMAL COORDINATE - G FUNCTION

Turbulent boundary layers are much thicker than laminar ones and yet
have much steeper gradients near the wall. In order to accurately compute
turbulent boundary layers using finite difference techniques alone, thousands
of steps would have to be taken if equal step sizes in physical coordinates
were used. Other investigators (e.g., Refs. 1 and 4) have solved this problem
by employing variable step sizes in the y direction. This, however, leads
to a much more complicated set of difference equations than those presented
herein (developed for constant step size). In the present analysis, the problem
is solved by analytically mapping the physical normal coordinate y into y such
that constant step size in y yields very small ;steps near the wall and larger
steps as one proceeds outward. In order to be applicable a function should
possess, at a minimum, the following characteristics: its first and second
derivatives should be continuous and monatonically decreasing. The function

currently utilized is

~ 1/n
¥y = - B4
bt 8 {m[(e 1)<b+a>+1]} (67)
which has the inverse
~ n I
Y=b[-e——-_l_1<e(Y/b+B) -1>-a_] (68)
The constants @ and B are determined by the condition that %% | =0

equals a specified number. The constant, b, is equal to the value of ¥ at the
edge of the boundary at the initial station. Figure 2 shows what this function
looks like for several values of n, with @ and 8 = 0 (o and B = 0 yield

dy/dy |;= 0 = ®»), The amount of stretching is basically controlled by the
parameter n. The first and second derivatives of the stretching function

(equation (67)) are also required in the analysis and are:

1
%=G‘=%—D (lnpy{n- 1V (69)
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where,

D = e—l>(—§ +a> +1 (71)

Another form for the G function which could be used is

Y=1AK1“[1+LKA_&] (72)

-1
n "{"o

which has the inverse

A
e . g¥Y/by_ ,
V=09, S 73)

In this latter formulation the initial step size from the wall in the physical
plane & 9’0 is specified and each succeeding step is larger by the factor K

(thus in the physical plane the step sizes are a geometric progression). The
step size variation generated by this formula in the physical plane is identical
to that used in the variable step size formulation of Reference 1. The latter G
function was not tried during the current effort so it has not been conclusively
established which is better. However, it does appear that the second form
would require the use of considerably more mesh points since the step size does
not increase as rapidly away from the wall as it does with equation (67). It

is probable, however, that in return for the greater number of mesh points a

somewhat higher accuracy is achieved.

A further discussion of the stretching function is given later on when

the results of the test cases are presented.
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I. THE SCALING FUNCTION, ¢

As defined and described in Section E, the purpose of the { function is
to scale the normal coordinate ; such that the normalized coordinate ¥ is about
unity at the edge of the boundary layer. Therefore, € must be directly related
to the thickness of the boundary layer.

The chief difficulty to be surmounted is the fact that the boundary layer
thickness is not known until the solution has been obtained. In Reference 5
where a similar type of scaling function has been utilized, the problem was
partially overcome by specifying the equivalent of { in advance, based on
experience or the results of similarity solutions. This procedure, while
better than no scaling at all, is limited in its ability to adequately scale
general problems with arbitrary boundary conditions (including surface mass
transfer) for which there is little or no foreknowledge. On the other hand,
attempts to calculate a scaling function, like {, as one proceeds, by predictor-
corrector or other methods can very often encounter numerical difficulties and
become unstable. |

In the present analysis the latter course was taken. Numerical difficulties
were encountered in developing a procedure for calculating ¢, however, the

method presented below has worked quite well for the solutions obtained to date.

Assuming the solution has been completed at station m and the solution
at m + 1 is being sought, { is found as follows: Cm, Q;n and gm—l are known,
€m+1 is then predicted as

Cros1 = Gy * Sy B8 (74)

the difference equations are then solved and a temporary corrected value of
€m+1' denoted gr’:ﬁ-l , is calculated from the velocity profile as the ;/L value
where | 1 - u/uel = .01. A value for g;n+1 is then calculated as

* -
' - €m+1 gm -1
m+1 bs + As_,

(75)
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where A's_, is the step size between stations m and m-1. A corrected

value of €m+1 is then found as fpllows:

Cnb = Gy * Chogy O . (76)

If further iterations are carried out at station m+1 a new value of C;l +1

and C‘m +1 is then obtained after each iteration. The initial values of { and
€', unless otherwise specified (i.e., through the use of input profiles) are
determined as follows. The value of C is assumed to be .833 8, where §

is the initial boundary layer thickness. An initial estimate for ¢' is obtained
by applying the results of flét plate incompressible similarity solutions (Ref. 27).
First, a virtual origin, Xy is located; X, being the upstream length of a
flat plate having boundary layer thickness 8. (' is then calculated as
.833 d6/dx|xo.

- For laminar flow

—_ 2

77)
s -1/ (
¢ =3 (REL Xo/

while for turbulent flow

5/4
_ 8D 1/4
X6 = \T37., Reg
(78)
¢ = .833(.37)(. 8)(ReLx ) 1/5

where Re; = o_ u, L/ Mg

In general, when started near the origin of the boundary layer, the’
solution does not appear to be very sensitive to the initial value of ' and,
to date, the development of a more sophisticated starting procedure has not
been warranted.
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BE BOUNDARY IAYER EDGE CONDITIONS

For a so-called first order noninteracting boundary layer solution,
the edge boundary conditions are given by the wall streamline results of
an inviscid solution. On the inviscid wall streamline the entropy, total
enthalpy and element mass fractions are all known and are constant along
its whole length. Only one other thermodynamic state quantity can therefore
be specified without overdetermining the boundary conditions. Currently this

state quantity is assumed to be pressure, or, optionally, for perfect gas flows,

velocity, from which pressure is found from Bernoulli's equation.

The initial thermodynamic state is determined from the given inviscid
pressure and temperature at the initial station*. The conditions along the
boundary layer edge are then found by isentropic expansion (or compression)

to the local pressure. For a perfect gas

hoop (X
- _ - N Y
h - \\ P ; (79)

e. e,

i i
and
- - 1/2

e = '._Z(He_he)_! (80)

If u_ is specified the procedure is reversed and h_ is determined from (80) and
then P _ from (79).

*Stagnation values can be used if they do not differ too much from the values
at the initial station.
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For equilibrium cases, the required edge conditions are determined
using the P, s option* of the One Dimensional Equilibrium (ODE) portion of

the Two Dimensional Kinetics Program (I‘D{K)(m) .

The pressure gradient term in lthe boundary layer equations is also
determined by the inviscid pressure distribution. The pressure distribution
at the edge of the boundary layer will be known as the result of theoretical
calculations or experimental results. In either éase the pressure distribution
will normally be given in either a graphical or tabular format. The gradient,
dP‘/dx,‘must therefore be determined by numerical differentiation. The numerical
problems inherent in trying to numerically differentiate a function which is not
necessarily smooth and well behaved and has large variations in its derivative
are well known. Under the above conditions the theoretically achievable
‘accuracy of a given difference formula can rarely be obtained, and in many
cases so-called higher order methods result in greater rather than smaller
errors. In the present case it was found that standard three point parabolic
differentiation or a more complicated scheme using averaged parabolic
derivatives (subroutine XNTERP from Ref. 25) would, for most of the problems
considered, give erroneous pressure derivatives (sometimes even of the wrong
sign) in one or more regions of the flow. Linear derivatives which, in principle,
for smooth well defined functions, are of lesser accuracy can be used to eliminate
the problem of locally erroneous results, but have the drawback of being only
piecewise continuous, i.e., the derivative at the junction of two linear segments
takes a finite jump. A method has been developed which hopefully takes
advantage of the best features of linear and parabolic differentiation without the
drawbacks of either. This method uses averaged linear derivatives and its usage
is described below for an arbitrary function F(x). Figure 3 is included for

illustrative purposes and shows a portion of a curve, F(x), defined at four points,

*Several subroutines from ODE have been incorporated into the current program,
with little or no modification, in order to do the required equilibrium state
calculations.
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xi - Xi+3 . The linear derivative between each successive pair of points is
calculated from

F.,. -F,
F!' = _.lﬂ___l (8]_)
L X4 7%

The derivatives for each segment are then considered to represent the

derivative at the midpoint of each segment, X defined as
i
X, +x
| itl
X, = T (82)
1

The derivative, F'(x), at all other points* is then found by linear interpolation

in a table of F‘i(x) vs x_, i.e.,
i

Ve N (x_xmi>
F'(x) =F + Fis1 - F " X, S XS xm-+1 (83)
( mi+1 - xmi> 1 1

The above procedure gives results quite similar to those obtained by 3 point

parabolic differentiation for smooth well behaved functions. In fact, for
equally spaced points the 3 point derivative at the midpoint (point 2) is equal
to the dérivative of the straight line connecting points 1 and 3. On the other
hand, the current technique is much better behaved if the function is not

smooth, like most experimental data.

In the computer program the previously described method of obtaining
a numerical derivative was used to calculate a velocity rather than a pressure
derivative, since the Bernoulli relation

due dPe
Oe ue dx = dx (84)

*For x values less than the first midpoint and greater than the last, a constant
uninterpolated linear derivative is used.

34




was utilized to eliminate dPe/dx from the equations.

K. INITIAL PROFILES AND STEP SIZES

As a result of the parabolic nature of the boundary layer equations,
initial profiles are required to begin the solution. For certain problems in
which the calculations are to begin at a leading edge or stagnation point exact
initial profiles can be obtained if similarity coordinates are employed.
However, for a more general class of problems the initial profiles must be
obtained by an alternative means, such as experimental data, or by approximation.

Currently, the computer program allows two alternative methods for
specifying the initial profiles. If the velocity and other required profiles are
known, either from experimental data or other calculations, they are input in
‘tabular form. If, however, initial protile information is lacking, provision
has been made to start the calculations from power law initial profiles. In
either case accurate foreknowledge of the pv profile is not necessary as errors
in this quantity usually have little effect and are quickly damped out.

For an incompressible boundary layer solution only the velocity (u) profile
has to be specified (the pv profile has been arbitrarily made to linearly vary
from (pv)w aty =0 to [(pv)W"'- 1] at the edge of the boundary layer). For compressible
perfect gas problems an initial enthalpy profile must also be specified. Equili-
brium H2 —O2 solutions additionally require an initial hydrogen mass fraction
profile. If there is no wall coolant flow at the initial station and there has been
none upstream either, then the mass fraction of hydrogen in the boundary layer
will be constant and equal to its edge value*. If there is mass addition at the
initial station, or there has been upstream, the initial hydrogen mass fraction
will vary across the boundary layer, and the variation must either be known or
approximated.

If the solution is initiated near the origin of the flow, where the boundary
layer is very thin, it would be expected (corroborated by the results presented
in Part III) that errors in the initial profiles would be quickly damped out. This
welcome circumstance results from the fact that as the boundary layer initially
undergoes rapid growth by entrainment the fraction of the total mass, momentum,

*Unless the initial hydrogen mass fraction profile was taken to be nonuniform
for some other reason.
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and energy flux attributable to the initial profile rapidly decreases. Thus,
while the magnitude of the initial errors may not be reduced, percentage wise

they asymptotically approach zero as the boundary layer continues to grow.

If, however, for some reason, one wishes to initiate a solution at a
downstream location where the boundary layer already has grown to an
appreciable fraction of its ultimate thickness, then relatively accurate initial
u, h and oy profiles should be used {an accurate p v profile is not required),
if possible, since further growth and adjustments cannot be counted on to

reduce the initial errors to an insignificant level.

For linear systems of equations it can be shown that the Crank-Nicolson
finite difference method is unconditionally stable. For nonlinear equations no
such proof is possible, however, past experience with the method (e.g., Refs. 22,23)
indicates that it is quite stable,at least for laminar boundary layer problems.
Numerical problems were, however, encountered, at times, in the development
and check out of the present method. While most of these problems were
attributable to early, unsatisfactory, formulations for the ¢ and G functions;
it does appear that, at least with the current technique, step size selection is
somewhat more important than it is for a laminar flow. Clausing's studies(ZG)
also shed additional light on the stability of numerical boundary layer solutions
and the reasons for, and possible ways of eliminating, oscillations in the

solution.

Two methods of varying the longitudinal step size, Ax,* have been
provided for. The two methods can be used separately, or together, to suit
the requirements of a particular problem. The step size can either be increased
or decreased discontinuously or through the use of geometric progressions. Sudden
large changes in step size do not usually cause problems as long as they are
not encountered too frequently. (Equilibrium solutions can be more sensitive to
step size changes). A large step size change can cause a local perturbation in
the solution which normally quickly damps out. If the step size is repeatedly

changed by a significant factor, before the perturbations from the previous

*For the sake of convenience the axial distance increment, 40X, is specified
and the actual computational step size, As, is then calculated as As = Ax/cos ew.
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changes have disappeared, then erroneous results can be computed.

At times, a problem may require the step size to be changed by one,
or several, orders of magnitude in a relatively short distance. Such step
size variations can many times be efficiently handled by employing a
geometric progression in which each step is a multiple (not too far from
unity) of the previous one. If the last value of x computed is denoted by
X the latest step size by Axo and the common ratio of the progression by
k, then the following formulas can be used to compute the step size and

distance covered after n additional steps.

bx, = bx, k" : (85)

(86)

" A large number of problems have not yet been solved with the present
program and a serious effort to optimize step size selection was not possible.
Therefore, the step sizes utilized in the successful solution of the problems
considered to date should serve only as a guideline and not as an absolute
limit on the step sizes which may be advantageously employed. The size
of the x steps that can be used is affected, to a major extent, by the magnitude
of the longitudinal gradients, e.g., drw/dx, dTW/dx, dPe/dx, drhw/dx, etc.
The higher the gradients the smaller the step size required to maintain a given
level of truncation error. Many times discontinuities in one, or several, of
the boundary conditions are encountered. Although, theoretically, discontinuities
violate the assumptions on which finite difference analyses are based, is it
possible to still obtain adequate solutions if the difference method is stable.

If the method of solution is stable, the large local truncation errors introduced
by the discontinuity will nomally damp out over a distance small in comparison

with the total region of interest.

In regions where rapid gradients or discontinuities are not present, a
step size on the order of 1/100 of the length to be computed has typically
been used. Much smaller steps have been used without changing the results
by more than 1 or 2%, however, the effect of larger steps has not been
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adequately determined. In regions with sizeable gradients, smaller steps
should be used. Experience will be the only guide as to how small a step

one need take in order to achieve the desired accuracy.

The step size, or number of mesh points, in the y direction must also
be selected. Since the use of the { function allows the solution to progress
without the addition of a significant number of mesh points, the spacing on

the initial line essentially determines the mesh size for the whole solution.

The initial number of mesh points for turbulent boundary layer flows has
been varied from 80 to 160 in the solutions obtained to date. Most of the
computations have been started out with 120 points. The exact number of mesh
points to use is not critical since the computed results are usually fairly
insensitive to the mesh spacing over a considerable range. The few laminar
solutions which have been obtained used 40 to 60 mesh points and no stretching,
i.e., G=1, G'=G" = 0. Again, the optimum number of mesh points should
be selected on the basis of an accuracy-solution time trade-off.

The equilibrium state calculations are performed by subroutines taken
from Reference 13 (based on the method of Reference 14). This method of
solving for chemical equilibrium is quite general and is designed to accurately
perform a limited number of calculations. For the I-IZ—O2 chemical system
currently being considered a less general, but more efficient, equilibrium solution
could be achieved, however, the time to develop such a solution was not

available.

Typical boundary layer solutions for problems of interest involve tens
of thousands of mesh points, If an equilibrium state solution was
obtained at each mesh point, computation times of one hour or more (Univac
1108) would be encountered. As a result, the feasibility of performing
equilibrium state calculation at every "nth"” mesh point was investigated. It
has been found that solutions can be achieved with equilibrium properties
calculated at only every 8th mesh point, without seriously affecting the
accuracy of the results (errors are typically of the order of 1%). Currently,
averaged parabolic interpolation is used to find the equilibrium properties
at mesh points not directly calculated. Improved, accuracy, or a larger
allowable spacing, might be achieved by using an interpolation procedure
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based on cubic overloapping spline fits.

L. BOUNDARY LAYER PARAMETERS

Once the solution at station m + 1 has been obtained, all of the
usual boundary layer profile parameters can be calculated. Currently, the
following parameters are computed: displacement thickness, §*; momentum
thickness, 8; local shear stress and shear stress coefficient, Tand Cf;
local heat transfer rate and Stanton number, ~q, and St. If desired, other
parameters such as the local Reynolds number based on s and 6 , the energy
thickness, shape factor §*/8, total mass in the boundary layer and total mass
injected into the boundary layer can be easily computed. For rocket engine
calculations, the thrust loss due to boundary layer effects and the nozzle wall

shape corrected by the displacement thickness are also calculated.

The equations for the profile parameters currently computed are

presented below, in both physical and nondimensional coordinates.
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C, = #, (90)

e e
o= w31, e, -9 B 57
(91)
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The second term of the displacement thickness equation (87) accounts
for the effect of mass addition into the boundary. However, as currently
defined, the mass addition rate must be a continuous (or piecewise continuous)
function for equation (87) to be applicable. In order to treat the case of film
cooling, when all of the mass addition occurs at one location, the integral
must be replaced by a definite correction term proportional to the total amount
of added mass, AM.*

du

The derivatives <= and -g—— in the definitions of T and qw have

| b
Ay 'w y'w
to be evaluated numerically. Currently, these derivatives are evaluated using

the standard 3 point difference quotient (a parabola is fit through the first

three mesh points). Under certain conditions this method of calculating the
derivatives is not as accurate as is desirable,and as a result, the possibility

of using an integral definition of Tw and q,, was investigated. In this method
the shear stress, for example, is evaluated by integrating the momentum equation

across the boundary layer and is given by the following quadrature:

| Ye
- dp
= LG S 1 du v _ Su ., e’ (93)
Tw TR F [_pu 3s * (ovG' - EV) v * ds J dy}
0
*The correction term for film cooling is(40) AM/ZﬂEeEe?W
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This definition of ‘TW proved to be unsatisfactory. When the solution
was smooth and had not been perturbed by large step size changes, very
rapid boundary condition variation, etc., both (93) and (89) gave essentially
equivalent results. However, when the solution was perturbed for some
reason, the evaluation of Tw using equation (93) was seriously affected, while
equation (89) was not. This result appears to be due to the problem of
accurately evaluating the du/d s derivative in equation (93). Reference 26
recommends the use of an averaged 3 and 4 point difference formulation for
calculating the wall derivatives. This formula was not evaluated in the
present effort, but could easily be tested in the future.

The definition of Stanton number, equation (92), is based on total
enthalpy. At times, other definitions have been used so when current
Stanton numbers are compared to other results, or data, one should first

check if the definitions are the same.

The thrust loss due to boundary layer effects is also calculated for
rocket engine flows. The formula used to compute the thrust loss comes from
Reference 40, the JANNAF recommended procedure. The formula compares the
thrust of an engine with mass flow M + AM and boundary layer losses (AM
is the amount of coolant mass addition) to the thrust of an engine with mass

flow M and no boundary layer losses. The thrust loss is given as

F = T o - =
A <2nrwp u2 cos ew>(e e e T

o0
'-1

(94)

- *
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Equation (94) has been written assuming the coolant mass flow is a
continuous distribution (i.e., transpiration), for film cooling the term subtracted

from 8 would be changed to AM/2T p_eﬁ_e?w.

41



III. NUMERICAL RESULTS

In order to checkout both the analysis and the programming, a series
of test cases have been solved, and the results compared to other theories
and/or data, as the case may be. The checkout procedure is best performed
in a logical step by step manner, starting with the simplest cases and
progressing upwards in difficulty. The time constraints on the current project
did not allow for as many test cases as would be desirable to be considered.
Nor was there enough time to systematically vary all of the program operating
parameters to try to optimize the accuracy-solution time trade-off. However,
the comparisons carried out to date have, in general, validated the current
approach.

The first problems to be considered were laminar flows, since the laminar
equations can be solved as a purely mathematical problem. Thus, the accuracy
of the numerical method and the programming of it can be verified without
extraneous complicating factors. The solution of turbulent boundary layer
flows, on the other hand, depends upon a certain degree of empiricism (in the
modeling of the turbulent flux terms) and "exact" mathematical solutions cannot
be achieved. For this reason, turbulent boundary layer solutions are best

compared to experimental data.

A. LAMINAR INCOMPRESSIBLE FLOW

The first test case considered was the "old standby" laminar incompressible
flat plate flow, for which the classical Blasius solution is exact. A linear
initial profile was used for u, pv was taken to be zero at the initial station,
and the initial boundary layer thickness 8/L was set to 10_4(L= 1). Forty
points were used in the y direction and the longitudinal step size Ax (s and x

4

are the same for a flat plate) was 10" * for the first 50 steps and was then

increased to 10“2 . The criteria for adding points to the boundary layer, and
, -1
the convergence criteria for iterating the solution were varied from 10 ~ to

10_3 and resulted in no more than a 1% change in the results.

Figure 4 shows a comparison of the calculated results (at station 70)

compared with the Blasius profile taken from Reference 27. To graphical
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accuracy the current profile is identical to the Blasius solution, in reality
the results are only accurate to within approximately 1/2 of 1%. The Blasius
solution also gives the following equations for the profile parameters:
Cf(Rex)% = .664; 6*(Rer/x)% = 1.72;‘8 (Rer/x)é = .664. The present results
yield Cf(Rex)‘é = ,666, 5*(Rer/x)% =1,714, and 9 (Rer/x)% = ,666 after 70
stations and these values remain constant thereafter. Thus, the calculated

profile parameters also agree to about 1/2 of 1% with the .Blasius solution.

Figure 5 demonstrates the asymptotic way in which the solution approaches
the correct answer when approximate initial profiles are used. As stated above,
the initial profiles for this case were far from correct. Initially, then, the
solution begins to rapidly adjust due to the combination of profile adustment
(the linear initial profiles begin to adjust and take on a reasonable shape)
and boundary l'ayer growth (the initial mass and momentum flux, with its
inherent error, begins to be a smaller and smaller percentage of the total).

This initial rapid adjustment is best carried out with a small step size, both
for numerical reasons and to confine the initial sizeable errors to as small a
region as is feasible. Once the solution has settled down and the step size

is increased the solution rapidly approaches the correct result.

A more difficult problem, the development of a laminar boundary layer in
a linearly retarded velocity field given by

ue=100 (1-ax) a=0.125 (95)
has also been computed. This flow was originally studied by Howarth(2 8)
and its exact solution is known essentially all the way up to where the boundary

layer separates (ax ~ .120). The local skin friction coefficient modified as

C £ GZ Re %
2 o2 12r5) , has been plotted in Figure 6 where it is compared to the

exact solution. Up until very near separation the current solution agrees to
within one percent of the exact results. The present solution used linear

initial profiles, 40 mesh points across the boundary layer and the following

x step sizes: 30 x 1074 steps, 30 x 1073 steps, then a step size of .007 the rest
of the way. In order to achieve an accurate solution closer to the separation
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point more points and smaller steps (probably on the order of 0.0001 would
have to be taken). All of the above results were calculated withy =y
(no stretching).

In preparation for the calculation of turbulent flows, the Howarth solution
was repeated using the G function with n = 1.2. The results were essentially
identical.

B. LAMINAR COMPRESSIBLE FLOW

The formulation and solution of the energy equation was checked by
solving several compressible laminar boundary layer problems. The first
compressible flows considered had zero pressure gradients and Pr and Le
equal to unity. Under these conditions the total enthalpy profile should be
related to the velocity profile by the Crocco integral, i.e.,

H H

H __w . u W

TS to (1-H (96)
e e e e

In all cases the current results satisfied the Crocco integral to within less
than 1%.

Calculations were also made for a Mach number equal 2 flow over a flat
plate with a wall to edge temperature ratio of 0.25. A Prandtl number of 0.75

(29) accurately solved

and Sutherland's law for viscosity were used. Van Driest
this problem, and the current results, in terms of skin friction, again agreed

to about 1%.

In solving the above problems, as well as those to be described below,
no attempt was made to obtain solutions accurate to four or more significant
figures. Laminar solutions, being in a sense purely mathematical can be, if
desired, compared on such a fine level. However, the empirical nature of the
turbulence modeling does not warrant the effort or expense required to obtain
(i.e., fine mesh and steps sizes and small convergence tolerances) solutions

to four or more significant figures.
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C. TURBULENT FIAT PLATE AND ACCELERATING FLOW

For the first check on the ability of the program to calculate turbulent
flows, the flow over a flat plate was chosen since it is the simplest and
most widely studied turbulent flow, Linear initial profiles were again used,
however, a continuous variation in the x step was used. The x step size
varied from 10_4 at the beginning to 2 x 10_2 at the end of the calculation.
The first solution was obtained with n = 2 in the G function, GSI/ =0 85, and
could not be continued past a local Reynolds number of somewhat less than 106.
Additional solutions were carried out with n = 4 and n = 5 and were completely
successful. It was determined that to compute turbulent flows with Reynolds
numbers on the order of 107 to 108

‘= dy/d§|; _o has to be on the order of 1000.

, the initial derivative at the wall,

Figure 7a shows a comparison between the computed turbulent velocity
profile and data, in law of the wall coordinates. The results shown are for a

Reynolds number of 1 x 107

and it can be seen that excellent agreement was
achieved. TFigure 7b shows the local skin friction coefficient versus Reynolds
number. The current results are compared to both data and results obtained
by Cebici and Smith, Reference 1. The present results agree fairly well with
the data but are a few percent too low. The present solutions were obtained
using only about 100 points across the boundary layer while the results of
Reference 1 were obtained with approximately 300 points. Also, the effective
mesh stretching is somewhat different. Either one of these considerations
could account for the small differences.

Incompressible flat plate turbulent boundary layer solutions were also
obtained for some of the flows measured by Reynolds, Kays and Kline(31).
The plates were maintained at constant wall temperature and heat transfer
data was obtained. The present Stanton number results agreed with the data

to within a few percent in all cases.

During the past several years, Kays, Moffat and their co-workers at
Stanford have carried out an extensive series of low speed turbulent boundary
layer experiments (e.g., Refs. 10 and 32). As part of this series, Julien, Kays
and Moffat(32)

for a low speed flow with and without favorable pressure gradients and surface

performed a series of tests which measured velocity profiles
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mass transfer. Two of the flows measured by Julien, et al, have been calculated,
one with, and one without, blowing at the wall. Figure 8 shows the experimental
velocity distributions for both cases and the mass flux distribution for the case
with blowing is shown in Figure 9. The acceleration parameter, K = V(due/dX)/uZ,
for these cases is shown in Figure 10. The parameter is often used as a measure
of the strength of the pressure gradient. Relaminarization is thought to occur for
values of K greater than about 3 x 1076,

Using the present method excellent agreement with the data of Reference 32
was achieved. Some of the results obtained are shown in Figures 11-14. Figure 11
shows a comparison between the calculated and measured velocity profiles at the
45.67" station for the case with blowing. The profile is shown in "law of the
wall" coordinates. Similar agreement with the measured profiles was obtained
at all the locations compared. Figure 12 shows the calculated and measured
values of momentum thickness, with, and without, blowing. A comparison with
the measured shape factor is presented in Figure 13, while the measured and
calculated local skin friction coefficients are shown in Figure 14. The skin
friction data presented was not obtained by direct measurement, but was inferred
from the measured velocity profiles. Several methods of inferring Cf were tried
in Reference 32. The results reported herein were obtained from the velocity

measurements made in the sublayer and have an estimated accuracy of + .4 to .5.

The excellent agreement between the data and calculated results, for this
more difficult case, lends credence to the turbulent transport models currently
employed.

D. COMPRESSIBLE TURBULENT FLOW IN A NOZZLE

Back and Cuffe1(33) made velocity and temperature profile and heat transfer
measurements for a turbulent boundary layer flow in a cooled conical nozzle with
10° entrance and exit half angles. The geometry of the nozzle is shown in
Figure 15. The locations of the 5 probe positions at which measurements were
made are also shown. A turbulent boundary layer solution was obtained for this
nozzle and the results compared to the data. The calculation was started at
probe position 1 (x = 3.563") using the experimentally measured profiles. The

pressure and wall temperature distributions used as boundary conditions are
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are shown in Figures 16 and 17, respectively.

Comparisons of the measured and calculated velocity profiles, skin
friction coefficient, momentum thickness, displacement thickness and heat
transfer rate are shown in Figures 18-22. The velocity profiles shown in
Figure 18 correspond to the fourth and fifth probe positions, as shown in
Figure 15, and good agreement was obtained. The calculated and measured
skin friction coefficient and momentum thickness (Figures 19 and 20) are also
in good agreement. The calculated values at the end (probe position 5) are,
however, somewhat higher than the data. The displacement thickness,
Figure 21, and heat transfer rate, Figure 22, also agree quite well with the
data in the convergent and throat regions of the nozzle, but are high in
the divergent section.

The results obtained for this case are, in general, quite encouraging.
It can be tentatively concluded that the current eddy viscosity
model may be high in regions where strong wall cooling and significant
compfessibility effects occur simultaneously. Additional comparisons with
other data should be made, however, before firm conclusions about the model

are drawn.

A further comment about the behavior of the displacement thickness at
the end of the nozzle is in order. Beginning about two inches past the throat,
the calculated 8 * begins to rise and at the end of the nozzle is approximately
.001 feet as opposed to the measured value of about - .001. The behavior
of 6* in this region is the only instance, of all the parameters compared, where
the calculated trend did not match the trend of the data, and as such is somewhat
of an enigma. While the exact reason or reasons for this result are not yet
known it is speculated that one or all of the following are related to this problem.
As previously noted the calculated eddy viscosity appears to be a little high in the
divergent section; this accounts for at least part of the §* trend. In addition,
when the displacement thickness is very small (+ or -) the contributions to the
8 * integral (equation 87) tend to be of opposite sign in the wall and edge regions
of the boundary layer; i.e., pu, tends to be less than o0 U, near the wall and
greater than Pele near the edge. When two almost equal numbers of opposite
sign are added together significant round off error can occur and relative error

size increases. This effect tends to magnify the effect of errors in the calculated
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velocity and density profiles. In addition, the stretching of the coordinate
system currently employed (i.e., ; - y transformation) causes a large mesh
size to be used near the edge of the boundary layer. This near edge loss

in accuracy coupled with the magnification of the relative error, as discussed

above, is probably also a factor in the false §* trend.

Other possible factors which could account for some of the difference
between the calculated and measured §*, as well as the other parameters,
are the neglect of curvature effects in the analysis, which are not necessarily
insignificant in a small nozzle; and the fact that constant specific heat and
Prandtl number were used in the analysis, while some real gas effects were

present under the experimental conditions.

Additional solutions to the nozzle flow described previously have also
been obtained. These solutions tested, to a limited degree, the effect of
step size, mesh spacing, coordinate stretching, laminar and turbulent Prandtl
num ber and initial profiles. The first solution described previously used a total
of 230 finite difference steps, 120 mesh points, initial profiles based on the
experimental data, stretching parameters n = 4 and dy/d¥y |y=0 = 1000 (see
Eq. (67)), a laminar Prandtl number of .7 and the turbulent Prandtl number
formulation given by equation (16). Decreasing the step size by a factor of 2
gave essentially identical results, while the calculation with double the
original step size could not integrate past the throat. Changing the stretching
parameters ton = 5 and dy/d?]y=0 = 3000, increasing the number of mesh
points to 160 and changing the laminar Prandtl number to .75 all had essentially

no effect upon the solution (i.e., the parameters of interest varied by less than
1%) .

When the turbulent Prandtl number formulation given by equation (16),
or a similar formula, is not used, most investigators have used a constant
value of PrT = .9. A solution was obtained with all input identical to the original
solution, but with equation (16) replaced by Prq = .9. A comparison of the
resulting heat transfer rate with the original solution, and the data, is shown
in Figure 22. Up to 10% differences between the two solutions are noted with
the PrT = .9 solution always closer to the data. One comparison with a single

set of data is certainly not conclusive, however, based on these results, the
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relative merit of using a variable turbulent Prandtl number formulation like

equation (16) for compressible cool wall flows is certainly open to question.

Solutions were also obtained using linear and 1/7th power law initial
profiles of the experimentally measured thickness. As demonstrated by the
heat transfer results shown in Figure 22, the 1/7th power law solution, while
different in the initial portion of the flow, became approximately equal to the
original solution after about 2". The solution with linear initial profiles was
poor. Six inches downstream of the starting point the heat transfer was still
only half of the solution started from the experimental profiles. These
calculations illustrate the fact that if nozzle solutions are initiated when the
boundary layer has appreciable thickness (as opposed to near the origin of
the flow) a fairly accurate specification of the initial profiles is required.
This is due to the constantly accelerating nature of the flow in rocket nozzles.
The flow acceleration keeps the boundary layer from growing appreciably, and
in some regions the boundary layer actually shrinks. Thus, the errors
contained in the initial profiles are not "diluted” by rapid boundary layer
growth as they are if the boundary layer is initiated near the origin of the flow.

E. HYDROGEN-OXYGEN BOUNDARY LAYERS IN CHEMICAL EQUILIBRIUM
1. Preliminary Results

In order to check out the mathematical accuracy of the solution for
equilibrium hydrogen oxygen flows, solutions were obtained for flat plate
flows with the Prandtl number (laminar and turbulent) set equal to unity. Under
these conditions the "Crocco Integral” solutions relating the total enthalpy
and element concentrations to the velocity profile are valid, and may be used
to verify the accuracy of the numerical solutions. The enthalpy integral is
given by equation (96), while the relation between the element mass fractions

and the velocity profile may be expressed as

= - G '
@ oyt ga) (97)
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The test cases considered both laminar and turbulent flows and had a
wall temperature of 1800°R, an edge temperature of 5700°R, and O/F at the
wall of 2.333* and 10.17 at the edge. Starting from linear initial profiles,
all of the solutions agreed very well with the exact integrals given above
after 60 stations had been computed. The solutions usually satisfied the

integrals to four significant figures.

2. A Regeneratively Cooled Rocket Engine

An equilibrium boundary layer solution for the flow in the two dimensional-
planar nozzle depicted in Figure 23 was obtained. The configuration, together
with heat transfer data, was supplied by B. Waldman of Rocketdyne(34) .

Since the TDK program does not contain a planar option we had to be satisfied
with a one-dimensional pressure distribution obtained using ODE. The pressure
distribution obtained is shown in Figure 24. The wall temperature distribution
for the engine is shown in Figure 25. The solution was started at the injector
face (x = - 4"); although physically, a boundary layer flow in the usual sense

is not established until some distance downstream of the injector. The calculated
momentum thickness and local skin friction coefficients are shown in Figures 26
and 27, respectively, while the experimentally measured and calculated heat
transfer rates are shown in Figure 28. The agreement with the data is quite

good (within the accuracy of the data, + 20%) despite the somewhat unrealistic
use of the ODE pressure distribution. The ODE solution assumed complete
combustion at the injector face and, hence, a Mach number of approximately
1/10 (velocity of about 500 ft/sec) and an initial temperature of about 6400°R
were computed. Both these figures are unrealistically high and account for the
initial overprediction of heat transfer. It can also be noticed that the calculated
heat transfer rate peaks somewhat past the experimentally measured peak. This
again is probably attributable to the 1-D pressure distribution. In one dimension
the sonic line is at the throat plane while physically, it is known that at the
nozzle wall the sonic point is reached somewhat upstream of the throat. Thus,

it is felt that the good agreement between the experimental and measured heat

*For these solutions the boundary condition on O‘w was temporarily changed
to aw(x) = constant.
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transfer could be even further enhanced if a more appropriate and accurate
pressure distribution were used.

It should be mentioned that the laminar transport property subroutine was
not yet available when the solution was obtained. Thus, in order to run the
case the Prandtl number was set to 0.58 (a good approximation for the range
of given conditions) and the viscosity was obtained by curve fitting the results
of Svehla1®)
the solution and 120 mesh points were taken initially. The computation time
was about 12 minutes (UNIVAC 1108).

One hundred and eighty finite difference steps were taken in

3. A Transpiration Cooled Rocket Engine

An equilibrium hydrogen-oxygen boundary layer solution was also
obtained for a rocket engine configuration which utilized transpiration cooling
from the injector face to a point somewhat downstream of the throat. The
solution is based on an engine configuration supplied by T. Mayes of Pratt
and Whitney(ss) , however, some of the boundary conditions (wall temperature
and transpiration coolant flow rate) were modified from those given in Reference
35. No boundary layer data corresponding to the solution obtained exist. The
solution was obtained for the purpose of demonstrating that the current method
could provide reasonable boundary layer solutions for difficult engine geometries
with boundary conditions at least qualitatively similar to those encountered in
practice (i.e., rapidly varying and/or discontinuous wall temperature and

coolant flow rate distributions).

The engine geometry which was considered is shown in Figures'29 and 30.
The engine had a throat radius of 3.6603 inches, a convergent section area ratio
of 2.968 and an exit area ratio of 60. The chamber pressure was 3097 psia
and the O/F was 6.29. The TDK program(13)

distribution for the engine and in doing so the sharp corner expansion at the

was used to obtain a pressure

throat was replaced, for numerical reasons, by an arc which had a radius of
curvature ratio (to the throat radius) of .05. The resulting pressure distribution
is given in tabular form in Volume II of this report, as part of the sample case
input data. The wall temperature and coolant (hydrogen) flow rate distributions
are shown in Figures 31 and 32, respectively. A second solution, with twice

the coolant flow rate, was also obtained (up to a point just before the throat)
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for comparison.

Although boundary layer data for this case was not available the results
appear to be reasonable and the complexity and trends of the results can all
be traced back to the nature of the boundary conditions and their mutual
interactions. The heat transfer rate results that were obtained are shown in
Figure 33. The complexity of the results is self evident. Except for the
initial steep decline in dw’ which is due to the smoothing out of the approximate
initial profiles, the gyrations in the heat transfer rate can all be qualitatively
traced back to boundary condition variations. Note the large reduction in heat
transfer rate resulting from the doubling of the coolant flow rate. The great
effectiveness of hydrogen as a transpiration coolant can be traced to its low
molecular weight and large heat capacity. Figure 34 shows the calculated
species mass fraction profiles at a point .05 throat radii upstream of the throat.
The dominant species are hydrogen (Hz) and water. Note that at this station
the solutions show that the mass fraction of hydrogen at the wall for the higher
coolant flow rate is almost double that of the original solution (94% to 50%).
This result, to a large degree, is responsible for the large gain in cooling

effectiveness.

Figure 33 also shows that negative heat transfer results were calculated
for some regions. This situation is related to the nature of the boundary
conditions which were imposed. Physically, it means that in those regions the
specified coolant flow rate was excessive, from the standpoint of maintaining
the specified wall temperature. A negative heat transfer rate means that the wall
is transferring energy into the boundary layer. As one would expect this energy
addition is partially converted into momentum, and overshoot* is found to occur
in the velocity profiles. Figure 35 shows the calculated velocity profiles, for
the two mass addition rates, at the same location as the mass fraction profiles.
It can be seen that the greater energy addition (more negative éw) associated
with the larger mass addition rate results in a corresponding increase in velocity

profile overshoot.

*Overshoot being defined as velocities greater than the boundary edge velocity.

52




The tight throat geometry coupled with the rapidly varying, and sometimes
discontinuous, behavior of the boundary conditions for this case, places strict
limitations on the size of finite difference steps which can be successfully
employed. In the complete solution discussed previously, a total of over
500 finite difference steps were taken and the total computation time was about
25 minutes (equilibrium calculations were performed at every eighth mesh point).
At the present time, it is not known how much, if any, improvement in operating
efficiency could have been realized by a more optimal selection of step and mesh

size.

F. FILM COOLING

The different types of rocket engines (fuels, geometries, operating
pressure, thrust level, etc.) all have typical cooling problems. For some
of the high performance engines currently under consideration, especially
HZ/OZ engines, film cooling appears to offer an attractive alternative as a
candidate cooling technique. Figure 36 shows an idealized picture of a film
cooling geometry. In actual operating systems, the slot injection parameters
such as: slot width and height; injection angle, velocity and pressure; and
slot wall (lip) thickness may vary over a considerable range. In addition,
multiple slots may be employed to increase the cooling effectiveness and/or
the effective length which can be cooled. The actual coolant can be either
in a liquid or gaseous state upon injection, however, in its present form the
present analysis would not be applicable or easily extendible to liquid

cooling problems.

Over the yvears a relatively large body of literature and data on film
cooling has been generated. References 36 and 37 contain enough references
to serve as preliminary bibliographies on the subject. Until the last several
years the analytical capability to predict film cooling effectiveness consisted
mainly of semi-empirical correlations which usually were developed for specific
configurations and had limited general applicability. In recent years, however,
the finite difference method of Reference 2 has been applied to the calculation

of film cooling problems(ssjsg) and good agreement with low speed data was

obtained (except in the near slot exit region). Recently Bushnell and Beckwith(37)

published an extension of their finite difference method(s) to flows with
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tangential slot injection. By modifying the mixing length formulation in
their eddy viscosity model they were able to obtain good agreement with
supersonic slot injection data, even in the region near the slot exit. It is
also pointed out in Reference 37 that many of the correlational techniques
previously employed underestimate the cooling effectiveness of tangential
slot jets.

Unlike the finite difference solutions based on the methods of
References 2 and 5, the current method is not restricted to nonreacting flows
and, hence, could in principal, be used to calculate film cooling effectiveness

in rocket engines under actual hot firing conditions¥*,

Based on the results of References 37 to 39, and other investigations,
it appears, however, that the current turbulent transport models, which were
developed strictly for boundary layer flows, will probably have to be modified
before realistic solutions can be achieved. Modifications to the mixing laws
will definitely be required in the near slot exit region and most likely a
transition region in which the mixing rates relax back to normal boundary layer
values will be in order (in a manner similar to that of Reference 37). The effects
of chemical reactions and the large transport property and density variations
which are associated with the use of a coolant like hydrogen must also be

assessed.

For the usual boundary layer equations to be strictly valid for a film
cooling configuration, the static pressure of the jet and boundary layer flow should
be matched, the lip to slot thickness ratio should be small and the injection
angle should be very small or zero. Many practical systems violate one or
all of these constraints, however, the results of Reference 37 encourage one
to believe that unless the constraints are seriously violated the usual boundary
layer equations will be adequate, since a certain amount of nonideal behavior

can be empirically accounted for by modifications to the mixing model.

In order to demonstrate that the current analysis and computer program
are applicable to film cooling analysis in HZ-O2 engines, a sample, somewhat

idealized, problem was considered. The initial conditions at the slot exit were

*Currently only HZ—O2 engines can be considered.
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chosen so as to approximate a representative chamber film cooling configuration
for Space Shuttle APS class engines. The boundary layer edge conditions

were as follows: T_ =5870°R; P_ = 24 atmospheres; u, = 700 ft/sec; O/F , = 5.19.
The wall temperature was assumed to be 680°R. The coolant slot exit height
was taken to be .0035 feet, which is approximately the same as the initial
assumed boundary layer thickness. The initial velocity profile of the coolant
hydrogen was approximated by a pipe flow type profile and had a peak velocity
ratio of 1.2. The initial temperature of the coolant was assumed to be constant
and equal to the wall temperature. The initial boundary layer profiles were
obtained by calculating the boundary layer development up to the midway point
of a sample combustion chamber. The initial O/F profile is given by a step
function, since the injected flow was all hydrogen and the initial boundary
layer was all at an O/F of 5.19.

The initial conditions described previously are somewhat arbitrary and
idealized. They ignore the effect of the slot exit lip thickness and the
temperature gradients which almost certainly exist in the injected coolant.
The initial conditions are, however, sufficiently reasonable for illustrative
purposes.

The initial conditions are input in tabular form and the initial boundary
layer profiles are then set up by interpolation in the tables. The calculations
for the previously described sample case were continued a distance of 2.8
inches (about 67 slot heights). Figures 37 and 38 show the initial velocity and
O/F profiles, respectively, and their development at two downstream stations
(.42 and 2.8 inches). Qualitatively the results obtained from this sample case
are reasonable. In order to get good quantitative results the current eddy
viscosity model will most likely have to be extended. The characteristics of
the stretching function presently used to transform the normal coordinate are
also not particularly well suited to film cooling analysis. The current normal
coordinate transformation yields physical step sizes which monatonically
increase from the wall to the edge. During the early development of the mixing
layer between the injected coolant and the initial boundary layer, significant
gradients are present well away from the wall. The need for transformations

which allow better step size control for such cases should be investigated.
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IVv. CONCLUSIONS AND RECOMMENDATIONS

A Crank-Nicolson finite difference solution of the turbulent boundary layer
equations has been developed, and evaluated, by comparison with data and other
solutions, for a series of laminar and turbulent test cases. These comparisons
showed that the current program is quite accurate and yields satisfactory results
for a wide range of boundary layer flow problems.

Preliminary conclusions based on the limited number of solutions obtained
to date indicate that while, in general, the current eddy transport model yields
excellent results further refinement may be needed to obtain completely satis-

factory results in cool wall divergent nozzle sections and in the near exit region
of a film cooled configuration.

While the program was developed on a Univac 1108 computer an IBM 360/65
version is also available. In its current form the computer program requires the
following approximate computation times (Univac 1108) for the type of turbulent
boundary layer problem indicated:

1. Incompressible flow 25-40 sec.
2. Compressible flow 1.5-2.5 minutes
3. Equilibrium HZ—O2 rocket engines 10-20 minutes

Further development of the program, either to broaden its range of
applicability, or to optimize and refine its present capabilities, is certainly
feasible. Efforts to improve the current capability, especially as applied to
HZ—O2 rocket engines, would be greatly aided by the availability of good experi-
mental data. Before embarking upon further development it is suggested that it

be established whether a data base sufficient to fully evaluate the program

exists for:
1. Regeneratively cooled engines
2. Transpiration cooled engines
3. Film cooled engines

If the data exists, an effort to fully evaluate the program would be in order.
If a data base only partially exists, the feasability of acquiring additional data
should be investigated.
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With additional experience and effort the efficiency of the program could
be increased and the input and output functions could be "human engineered”
to provide greater flexibility and control. The scope of the program can also,
if deemed desirable, be widened to include equilibrium chemical systems other
than HZ—OZ, or nonequilibrium effects. More efficient methods of performing
the required equilibrium state calculations could be developed.
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